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Rayleigh-Marangoni convection in a critical fluid: A tale of two crossovers
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We show that if we take a thin layer of fluid where surface tension effects are supposed to dominate and
gradually bring the mean temperature of the layer closer and closer to the liquid vapor critical point, then first
there is a crossover from Marangoni to Rayleigh-Benard convection and thence to a convection whose onset is
determined by the Schwarzchild criterion.
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. INTRODUCTION T—T.| #
§=§o(T—) =t ¥, 1.3
A recent experimentl] on the convective instability in a ¢
pure fluid near its second order critical point has clearly réwhere u is a critical exponent which is about 0.63 for the

vealed the crossover of the temperature difference requireﬁure fluid. The thermal expansion coefficient diverges
for the onset of convection from a Rayleigh criterip®)| strongly asT approached . and one has
dominated regime to a Schwarzchild criteri@} dominated

regime. This crossover is brought about as one approaches a={? (1.4
(i.e., the mean temperature of the convection cell ap-

proachepthe critical point leading to an enormous increasefor large . The heat transport coefficient (the thermal
in compressibility. The Rayleigh criterion corresponds to andiffusivity) shows critical slowing down and for large
incompressible fluid while the Schwarzchild one corresponds

to a compressible fluid. In the Rayleigh picture, the buoy- A={"1 (1.5
ancy force causes the hot fluid to rise—an effect which is

opposed by the viscous drag. In the resulting dynamics if thd he viscous coefficient has a very weak divergence and we
hot fluid loses its heat due to thermal diffusion faster than itwill ignore that over here without any significant error. Us-
can rise, then convection cannot occur. This picture leads ting Egs.(1.39—(1.5) in Eq. (1.2, we see that

the formation of a dimensionless variable called the Rayleigh

number defined by ATe=(73 (1.6

a(AT)gd? on the basis of the Rayleigh criterion and hence as the mean

=, (1.1)  temperature of the cell approaches the critical point, the tem-
perature gradient for onset of convection should approach
zero.

However, for the extremely compressible fluid, the stabil-
ity criterion involves the finite density difference due to an
infinitesimal pressure difference. If a parcel of hot fluid is
given an upward displacemend;” then due to the tempera-
ture differencesT with the surrounding at this new position,
it will see a favorable density difference

whereq is the thermal expansion coefficiedT is the tem-
perature difference between the bottom and top laygis,
the acceleration due to gravity,is the depth of the liquid\
is the thermal diffusivity, and is the kinematic viscosity.
Convection occurs iR is greater than some critical vally
and thus the critical temperature different®, for the onset
of convection is

_RoAw w2 5 =adT. (1.7)

The stabilizing density gradient would be provided by the
If the fluid is near its second order phase transition pointPressure difference which &P =pgd and leads to a density
then the static properties as well as the dynamic propertiedifference
are strongly affected by the critical fluctuations. The strong
fluctuations near the critical point are characterized by a cor-
relation length{, which diverges(i.e., becomes infinitely
big) as one approaches the critical temperaflige For a
temperature very close td., the behavior off is scale From Egs.(1.7) and(1.8), the onset of convection occurs if
invariant and can be written 44] AT>AT® given by

AT,

agd3'

op
s = x710P= x7pgd. (1.8

ATO =

d
xtPgd (1.9
a
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Now, as{—», y1~ {2, anda~{?, so thatAT, acquires a since 14>1, AT,—0 as the critical point is approached. If
finite value as opposed to the zero obtained from @d). we now consider the fluid to be compressible, which we
The criterion shown in Eq(1.9) is referred to as the must as it approaches the critical point, then the effect of
Schwarzchild criterion. For a pure fluid the crossover fromcompressibility will show up and instead AfT;.— 0 it will

Eq. (1.6) to Eqg. (1.9 has been beautifully demonstrated in eventually saturate aﬁ‘(:s) given by Eq.(1.9).

the experiment of Kogan, Murphy, and Meydy. We now imagine starting a convection experiment with

We now consider the other mecham@'ﬁnﬁ] for the onset d<d. and the mean temperature away from the critical tem-
of convection—the effect of surface tension. If on the free

. . ) T eratureT .. The onset of convection will be surface tension
surface there is a fluctuation causing a variation in tempera; = .
T dominated. We now let the mean temperature apprdach
ture across the surface, then the surface tensiarhich is a

function of temperature is no longer constant across the Suﬁrom Eq.(1.12, we see that

face and leads to an unbalanced foréer/(gx) ox per unit d~ g2+ 12 (1.15

length. This force can be estimated froau{dT)ATd and is

analogous to the buoyancy forag ATgd. The dimension-  which implies thatd, decreases as we approaEh. For d,

less number corresponding to the Rayleigh number of Eg=d, there will be a crossover from Marangoni to Rayleigh

(1.1) is now behavior, the temperature corresponding to this crossover is
given by the correlation lengtli., such that

g
-7 (AT)d d.=d. (1.16
M=—— (1.10
pYA For {>¢., the Rayleigh criterion will dominate and eventu-

) ] ) ally for > (., we will have a crossover to the Schwarzchild
and is known as Marangoni number. Convection sets Mas gffect. Thus there will be two crossovers of this kind of an

becomes equal to a critical vali, and the critical QT) is  gxperiment from Marangoni to Rayleigh followed by another

given by from Rayleigh to Schwarzchild. In the two subsequent sec-
tions, we will use the equations of hydrodynamics to estab-
AT = MopvA (1.11 lish the above result. In Sec. Il, we provide a detailed deri-
¢ do ' vation of the governing equations. This is necessary because
d aT the two previous approaches to Rayleigh convection in a

compressible fluid led to equations which appeared to be
The relevance of the Rayleigh mechanism and the MaVYe'y different from each other, although they seemed to yield

rangoni mechanism can be judged from a comparison of Eq§_ritical Rayleigh numbers pretty close to each other. We pro-
(1.2) and (1.12). In a given situation we can estimate the vide a careful derivation in which if the surface fluctuations

critical temperature difference required to see a buoyancf® dropped the previous results on Rayleigh-Benard convec-
driven convection by looking at Eq1.2) and the tempera- 10N appear with the connection between the two prior ap-
ture difference required to see a surface tension driven coriroaches apparent. In Sec. Ill, we solve the system of equa-
vection by using Eq(1.11). The mechanism which yields a tons to formally arrive at the crossover described above.
smaller value of the criticaAT is the dominating mecha-

nism. Clearly ifd is large AT, will be smaller and thermal Il. MATHEMATICAL MODEL
expansion will dominate and il is small, AT, will be In this section, we will set up the required equations of
smaller and surface tension will dominate. The Ccrossovefinear stability analysis from which the condition for desta-
thicknessd, is found from bilization of the conduction state will be obtained. The two
relevant equations are the Navier Stokes equation for the
(7_0 velocity field v, and the heat diffusion equation. The Navier
dz:& i (1.12 Stokes equation reads presence of gravily
¢ Mo apg’ ' . .
v - - VP 2= o~
for d>d,, the Rayleigh criterion holds and far<d,, it is 5 T Vyu=- i vV +gz, (2.1)

pure Marangoni.

The criterion in Eq(1.11) is obtained on the basis of the \whereP is the pressure angithe acceleration due to gravity.
incompressibility assumption. Now, if we approach the criti- The heat diffusion equation reads
cal point, then the surface tension vanishes accordirig]to

17 I ~
gl 2 (1.13 T| 2 9Q+(v-V)8Q | =AV24T, (2.2
which meansio/aT~ ¢~ 2*Y* and consequently where 5Q is the entropy fluctuation andT is the tempera-
ture fluctuation. These two relations need to be supplemented
AT~ e (1.14 by the equation of continuity which reads
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aVT

Ce

J - -
a—’t)+V~(pv)=0. 2.3 T5$=cp<5T— 5P) (2.10
The steady conduction state solution corresponds to allinearizing Eq.(2.2) about the conduction state, keeping

alat=0,0=0,dP/3z= — pg,p=po(z) and a linear tempera- @/dt=0, and carrying out the rescalings we have
ture profileT(z)=T,+[(T,—T,)/d]z, whereT, andT, are

29— _ _
the temperatures of the lower and upper plates, respectively, VEo=—w(l=A), (217
andd is the thickness of the fluid layer. To test the stability |, hare
of the conduction state, we consider the fluctuatiéns 5P,
op, and 8T of the velocity, pressure, density, and tempera- B aTdg A Cy
ture fields and linearize the equations of motj&uy. (2.1)— A= CoAT A\~ Cp (212

(2.3)] in terms of these variables.
We first need to determine the steady state dengity). Our Eq. (2.11) agrees with Eq.(1.10 of Gitterman and
To do so, we note that a variation jnwith z is caused by Steinberg.

variation of temperature and pressure. Consequently, We now examine the numerical values of the coefficients
A; and A,. For relative temperatures~10"4, it is clear
dpo _ dp dP dp IT _ po from such an examination th#, and A, are numerically

0z P oz Tataz al MtAd @A bt the ratidA; /A, is close to unity for aAT which is
of the order of a micro kelvin. At~10 4, C,<Cp and the
where factor A of Eq. (2.12) is consequently close to unity. The net
result is thatA, and A;(A,—A;) can be dropped in Eq.
A1=pogxd and A,=a(AT). (29 (2.9, but A needs to be retained in E.11). It should be
noted that in such experimenis can never be reached be-
" cause there is a finite heat current and sall never really
=po(2) andv =0 yields become significantly smaller than 1% In such a situation,

Egs.(2.9 and(2.11) reduce to

Linearization of Eq.(2.3) about the conduction state with

d ﬁpo > >
At this point, we will introduce a simplification—we will be V20=—w[1—A], (2.19

studying the stationary instability of the conduction state

which implies that we will be interested in the critical value the system arrived at by Carles and Uguiftas To see the
of RandM, at which the time dependence of the fluctuationsequivalence of Eqg14)—(19) of Carles and Ugurtas and our
vanish. So in Eq(2.5) and in all subsequent equations, we Egs.(2.13 and(2.14), we note that Eqs(15)—(17) of Ref.
will set 9/9t=0. With this specification, Eq(2.6) becomes  [7] can be written for the stationary state as

. dpo V2 ,=VP;+pi2z (2.15
polV - 60) == (W) —-. 2.7 o

while Eq. (14) readsV-v,=0. Taking a divergence of the
We now turn to Eq(2.1) and linearizing about the conduc- former leads to V2P;=—dpy/dz or V2(dP1/dz)
tion state =—9%p,/92%. If we now operate the direction velocity

profile with V2,

d N Aq
ax  d

5i3) oP+ agp5T5i3.
(2.8

2 _
—povV<ov;=— 9 F
V2V2W1=EV2P1+ V2p1=Vip=— EViTl,

2.1
Returning to Eq.(2.8), taking a divergence, operating (216
with (9/dz+Ald) and appropriately scaling variables to whereVZ=42%/ax?+ 3% gy®. A proper rescaling ofv; and T
make them dimensionless, we get makes the above equation identical to E3j13 above. The
identical rescaling of Eq(18) of Ref. [7] now leads to Eg.
(2.14 in the stationary limit by straightforward algebra.
Since our Egs(2.13 and(2.14) were obtained from a tech-
(2.9 nique similar to Gitterman and Steinberg and eventually,
keeping the leading terms, we arrive at a system identical to
Wherer is the Laplacian in the&-y plane. This equation is that of Carles and Ugurtas, we believe that the two ap-
identical to Eq.(4.9) of Gitterman obtained by a different set proaches give the same result. Thus we have provided a deri-

oW
V2V2W+A2V2(E) +A(A,—A)V2W=RV?9,

of manipulations. vation which shows clearly the connection between the two
We now turn to the entropy equation and write the en-different forms existing in the literature—that due to Gitter-
tropy fluctuation as man [3] and that due to Carles and Ugurted. We now
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discuss the boundary conditionB0], where we will have to 700
introduce the effect of the surface tension. At the lower plate . | —
(taken to be conductingthe “no-slip” condition implies J
that 500
E L
IW 400 -
WIEZHZO at z=0. (2.1 300_.
R
[ ]
The top surface is free and if from the mean positiorz of 2°°', /
=1 there is a fluctuation, then 100 °
(97] 0- '..
w= ) at z=1. (2.18 o0 . . . . . .
0 2 4 did 6 8 10

c

For a stationary instability »/9t=0 and hence
FIG. 1. Plot ofR. versus @/d.).

w=0 at z=1. (2.19
If the interface is very weakly conducting, then we can ap-for Rayleigh-Marangoni convection in a compressible fluid
proximate it as insulating and then [under the approximation that; ,A,<1 andA~0O(1)]
90 (D?2—a?)’F=Ra’G,
EZO at z=1. (2.20
(D?—a?)G=—(1-A)F (2.2
Now for the force balance on the interface, the stress tensQlin
is
F=DF=G=0 on 2z=0,
Ti=—Po+p| 2y 2 (2.2
e ij TPy ax;  Ix;) ' F=DG=0 on z=1,
The change in t_he normal component of the stress is C(D?-3a%)DF=a%B+a?)y on z=1,
20 - curvature, while the horizontal component of the stress
tensor has to be provided by the gradient of the surface ten- (D?*+a®)F+Ma%(a+7)=0 on z=1. (2.25

sion. The surface being characterized by the deflection
7(X,y), we have the unit vectorggnoring quadratic powers In the next section, we will analyze the solution of Egs.
of ) given by: normaln=(—dn/dx,—dnldy,1) and the (2.24 under the boundary condition of E@.29 to arrive at

tangentialt=(1,047/x). The normal force balance on the the relation betweeR andM that is necessary for the solv-
surface give$10] ability. To end this section, we note that we are definiag

has been conventional in the literatuid in terms of AT,

W whereAT/d is the temperature gradient in the layer.
— + (A=A V2w=(V]{-BV]) 7, An inconsistency in this approach was recently pointed by
9z Rabin[8], but as shown in the experiment of Schatzal.

(2.22 [9], the conventional definition gives a very account of the
~ ~ experiment and hence we will follow the conventional defi-
where C=pv\/20d is the crispation number and nition of the Marangoni number.
=pgd?/20 is the Bond number. From the tangential stress

2

~[ d 5
C E+3V1

balance we get lll. ANALYSIS
Pw  9°T W P(6+ n) We begin with the observation that the surface fluctua-
————(A,-A)—+M———=0 onz=1 i i i B/B= 3
o2 922 9z ox2 tions » will be determined by the rati€/B=v7/gd-. Close

(2.23 to the critical point, the shear viscosity and hencéas a
' weak divergence while the thermal diffusivity vanishes as

We now choose the coordinate system such that the axis dfie inverse of the correlation length which makesC/B

the rolls coincide with they axis and thus there is ng  small near the critical point. Consequently in the following
dependence inv and . The x dependence is periodic with analysis, we will ignore the effect of the surface fluctuations.
wave numbem in dimensionless units and tleedependent  We will use a variational functios(z) for the temperature
functions forw and ¢ are F(z) and G(z), respectively, in fluctuations, which is known to be very accurg®g for the
such a way thaiv=F(z)e'®* and =G(z)e'**. So in the pure Marangoni convection. Our technique will be(ifpuse
final analysisF(z) andG(z) satisfy the following equations a trial function for the temperature variabB(z); (ii) solve
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for the velocity profile from the velocity equation and ensurereads
that all boundary conditions are satisfi€iif;) now satisfy the
temperature equations in the mean to find the relation be-
tweenR and M.

F(z)=Acoshaz+ A, sinhaz+ A3z coshaz

. 72 2
Accordingly, we choose +Ayzsinhaz+ —| —=+z——|, (3.2
a?| 2 a2
. whereA;, A,, Az, andA, are constants which have to be
G(z)=z< 1— _), (3.1)  obtained from the boundary conditions. Satisfying the tem-
2 perature profile equation in the mean, we arrive at the final
result:
where an overall prefactor has been set equal to be unity, in _ Rohw 1 aTgd
anticipation of the fact that in the homogeneous system that AT= agd® Ro [dc|? + Cp ' 3.3
we have, it cannot eventually matter. The functi®(z) in- 1+ M_(E)
corporates the conducting walls a0 and the insulating 0
walls atz=1. The solution of D?—a?)?F =Ra’G, now whered, is the crossover thickness defined in Ef12), and
a2
2a*(CS—a) 1+§
RO(a):c 2a° 6 > S+ 13C2+1 2—4)(aS+4C ! 3+ +3 o
3 0 paSt @ -aastac)mgattat g
|
and to exhibit the result in a plot oR. vs d/d;, whereR; is the
usual critical Rayleigh number which for this problem is
5 around 700 witha=a.=2.0. From Eq.(3.3), we obtain in
a this limit
4(CS—-a)| 1+ 3
Mo(a)= (3.9 d\?
(S—a)? RoM o(—
where C = cosha and S=sinha. R= d\? 3.7
If we work with a thicknessl which is much smaller than Mo do +Ro

d. when one is well away from the critical temperature, then

as expected which is a function of the wave numbex, and has to be

minimized with respect t@ to give R.. The plot in Fig. 1

shows that even wheth=10d.., the effect of surface tension

_ Morv " “ng: MoAv (3.6 IS to cause a reduction of 8% in the pure buoyancy driven
agdd?  Cp agdd? ' Rayleigh number.

Returning to our present problem, we interpret the chang-
which is the pure Marangoni convection. As the mean teming temperature as a changidg for a fixedd, and hence as
peraturel of the convection cell is lowered, decreases and we go closer to the critical point we move from a small value
AT tends towards a value closer to that for pure Rayleighof d/d. to a later much larger value af/d. as the critical
convection. It should be noted that even if the critical phe-point is approached.
nomena is unimportant and the compressibility effect exhib-
ited by the second term on the right hand side of B3) is
absent, Eq.(3.3) provides a clean analytic answer to the
problem of studying the crossover from Marangoni to Ray- One of the authorgK.S.D) would like to thank CSIR
leigh convection asl is increased. For this purpose, it is best India for partial financial assistance.
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