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Rayleigh-Marangoni convection in a critical fluid: A tale of two crossovers
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We show that if we take a thin layer of fluid where surface tension effects are supposed to dominate and
gradually bring the mean temperature of the layer closer and closer to the liquid vapor critical point, then first
there is a crossover from Marangoni to Rayleigh-Benard convection and thence to a convection whose onset is
determined by the Schwarzchild criterion.
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I. INTRODUCTION

A recent experiment@1# on the convective instability in a
pure fluid near its second order critical point has clearly
vealed the crossover of the temperature difference requ
for the onset of convection from a Rayleigh criterion@2#
dominated regime to a Schwarzchild criterion@3# dominated
regime. This crossover is brought about as one approa
~i.e., the mean temperature of the convection cell
proaches! the critical point leading to an enormous increa
in compressibility. The Rayleigh criterion corresponds to
incompressible fluid while the Schwarzchild one correspo
to a compressible fluid. In the Rayleigh picture, the buo
ancy force causes the hot fluid to rise—an effect which
opposed by the viscous drag. In the resulting dynamics if
hot fluid loses its heat due to thermal diffusion faster tha
can rise, then convection cannot occur. This picture lead
the formation of a dimensionless variable called the Rayle
number defined by

R5
a~DT!gd3

ln
, ~1.1!

wherea is the thermal expansion coefficient,DT is the tem-
perature difference between the bottom and top layers,g is
the acceleration due to gravity,d is the depth of the liquid,l
is the thermal diffusivity, andn is the kinematic viscosity.
Convection occurs ifR is greater than some critical valueR0
and thus the critical temperature differenceDTc for the onset
of convection is

DTc5
R0ln

agd3
. ~1.2!

If the fluid is near its second order phase transition po
then the static properties as well as the dynamic prope
are strongly affected by the critical fluctuations. The stro
fluctuations near the critical point are characterized by a c
relation lengthz, which diverges~i.e., becomes infinitely
big! as one approaches the critical temperatureTc . For a
temperature very close toTc , the behavior ofz is scale
invariant and can be written as@4#
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z5z0S T2Tc

Tc
D 2m

5z0t2m, ~1.3!

wherem is a critical exponent which is about 0.63 for th
pure fluid. The thermal expansion coefficient diverg
strongly asT approachesTc and one has

a.z2 ~1.4!

for large z. The heat transport coefficientl ~the thermal
diffusivity! shows critical slowing down and for largez,

l.z21. ~1.5!

The viscous coefficient has a very weak divergence and
will ignore that over here without any significant error. U
ing Eqs.~1.3!–~1.5! in Eq. ~1.2!, we see that

DTc.z23 ~1.6!

on the basis of the Rayleigh criterion and hence as the m
temperature of the cell approaches the critical point, the te
perature gradient for onset of convection should appro
zero.

However, for the extremely compressible fluid, the stab
ity criterion involves the finite density difference due to a
infinitesimal pressure difference. If a parcel of hot fluid
given an upward displacement ‘‘d,’’ then due to the tempera
ture differencedT with the surrounding at this new position
it will see a favorable density difference

dr

r
5adT. ~1.7!

The stabilizing density gradient would be provided by t
pressure difference which isdP5rgd and leads to a density
difference

dr

r
5xTdP5xTrgd. ~1.8!

From Eqs.~1.7! and ~1.8!, the onset of convection occurs
DT.DTc

(s) given by

DTc
(s)5

xTrgd

a
. ~1.9!
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Now, asz→`, xT;z2, anda;z2, so thatDTc acquires a
finite value as opposed to the zero obtained from Eq.~1.6!.
The criterion shown in Eq.~1.9! is referred to as the
Schwarzchild criterion. For a pure fluid the crossover fro
Eq. ~1.6! to Eq. ~1.9! has been beautifully demonstrated
the experiment of Kogan, Murphy, and Meyer@1#.

We now consider the other mechanism@5,6# for the onset
of convection—the effect of surface tension. If on the fr
surface there is a fluctuation causing a variation in temp
ture across the surface, then the surface tensions which is a
function of temperature is no longer constant across the
face and leads to an unbalanced force (]s/]x)dx per unit
length. This force can be estimated from (]s/]T)DTd and is
analogous to the buoyancy forcearDTgd3. The dimension-
less number corresponding to the Rayleigh number of
~1.1! is now

M5

U]s

]TU~DT!d

rnl
~1.10!

and is known as Marangoni number. Convection sets in aM
becomes equal to a critical valueM0 and the critical (DT) is
given by

DT̃c5
M0rnl

dU]s

]TU
. ~1.11!

The relevance of the Rayleigh mechanism and the M
rangoni mechanism can be judged from a comparison of E
~1.2! and ~1.11!. In a given situation we can estimate th
critical temperature difference required to see a buoya
driven convection by looking at Eq.~1.2! and the tempera
ture difference required to see a surface tension driven c
vection by using Eq.~1.11!. The mechanism which yields
smaller value of the criticalDT is the dominating mecha
nism. Clearly ifd is largeDTc will be smaller and therma
expansion will dominate and ifd is small, DT̃c will be
smaller and surface tension will dominate. The crosso
thicknessdc is found from

dc
25

R0

M0

U]s

]TU
arg

, ~1.12!

for d@dc , the Rayleigh criterion holds and ford!dc , it is
pure Marangoni.

The criterion in Eq.~1.11! is obtained on the basis of th
incompressibility assumption. Now, if we approach the cr
cal point, then the surface tension vanishes according to@4#

s;z22 ~1.13!

which means]s/]T;z2211/m and consequently

DTc;z121/m ~1.14!
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since 1/m.1, DTc→0 as the critical point is approached.
we now consider the fluid to be compressible, which
must as it approaches the critical point, then the effect
compressibility will show up and instead ofDT̃c→0 it will
eventually saturate atDT̃c

(s) given by Eq.~1.9!.
We now imagine starting a convection experiment w

d!dc and the mean temperature away from the critical te
peratureTc . The onset of convection will be surface tensio
dominated. We now let the mean temperature approachTc .
From Eq.~1.12!, we see that

dc;z2211/2m ~1.15!

which implies thatdc decreases as we approachTc . For dc
5d, there will be a crossover from Marangoni to Rayleig
behavior, the temperature corresponding to this crossove
given by the correlation lengthzc , such that

dc5d. ~1.16!

For z.zc , the Rayleigh criterion will dominate and eventu
ally for z@zc , we will have a crossover to the Schwarzchi
effect. Thus there will be two crossovers of this kind of
experiment from Marangoni to Rayleigh followed by anoth
from Rayleigh to Schwarzchild. In the two subsequent s
tions, we will use the equations of hydrodynamics to est
lish the above result. In Sec. II, we provide a detailed de
vation of the governing equations. This is necessary beca
the two previous approaches to Rayleigh convection in
compressible fluid led to equations which appeared to
very different from each other, although they seemed to yi
critical Rayleigh numbers pretty close to each other. We p
vide a careful derivation in which if the surface fluctuatio
are dropped the previous results on Rayleigh-Benard con
tion appear with the connection between the two prior
proaches apparent. In Sec. III, we solve the system of eq
tions to formally arrive at the crossover described above

II. MATHEMATICAL MODEL

In this section, we will set up the required equations
linear stability analysis from which the condition for dest
bilization of the conduction state will be obtained. The tw
relevant equations are the Navier Stokes equation for
velocity field vW , and the heat diffusion equation. The Navi
Stokes equation reads~in presence of gravity!

]vW

]t
1~vW •¹W !vW 52

¹W P

r
1n¹2vW 1gẑ, ~2.1!

whereP is the pressure andg the acceleration due to gravity
The heat diffusion equation reads

TS ]

]t
dQ1~vW •¹W !dQD5l̃¹2dT, ~2.2!

wheredQ is the entropy fluctuation anddT is the tempera-
ture fluctuation. These two relations need to be suppleme
by the equation of continuity which reads
1-2
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]r

]t
1¹W •~rvW !50. ~2.3!

The steady conduction state solution corresponds to
]/]t50,vW 50,]P/]z52rg,r5r0(z) and a linear tempera
ture profileT(z)5T11@(T22T1)/d#z, whereT1 andT2 are
the temperatures of the lower and upper plates, respectiv
andd is the thickness of the fluid layer. To test the stabil
of the conduction state, we consider the fluctuationsdvW , dP,
dr, anddT of the velocity, pressure, density, and tempe
ture fields and linearize the equations of motion@Eq. ~2.1!–
~2.3!# in terms of these variables.

We first need to determine the steady state densityr0(z).
To do so, we note that a variation inr with z is caused by
variation of temperature and pressure. Consequently,

]r0

]z
5

]r

]P

]P

]z
1

]r

]T

]T

]z
5

r0

d
~2A11A2!, ~2.4!

where

A15r0gxd and A25a~DT!. ~2.5!

Linearization of Eq.~2.3! about the conduction state withr
5r0(z) andvW 50 yields

]

]t
dr1w

]r0

]z
1r0~¹W •dvW !50. ~2.6!

At this point, we will introduce a simplification—we will be
studying the stationary instability of the conduction sta
which implies that we will be interested in the critical valu
of R andM, at which the time dependence of the fluctuatio
vanish. So in Eq.~2.5! and in all subsequent equations, w
will set ]/]t50. With this specification, Eq.~2.6! becomes

r0~¹W •dvW !52~dw!
]r0

]z
. ~2.7!

We now turn to Eq.~2.1! and linearizing about the conduc
tion state

2r0n¹2dv i52S ]

]xi
1

A1

d
d i3D dP1agrdTd i3 .

~2.8!

Returning to Eq.~2.8!, taking a divergence, operatin
with (]/]z1A/d) and appropriately scaling variables
make them dimensionless, we get

¹2¹2w1A2¹2S ]w

]z D1A1~A22A1!¹2w5R¹1
2u,

~2.9!

where¹1
2 is the Laplacian in thex-y plane. This equation is

identical to Eq.~4.8! of Gitterman obtained by a different se
of manipulations.

We now turn to the entropy equation and write the e
tropy fluctuation as
01631
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TdS5CPS dT2
aVT

CP
dPD ~2.10!

Linearizing Eq. ~2.2! about the conduction state, keepin
]/]t50, and carrying out the rescalings we have

¹2u52w~12A!, ~2.11!

where

A5
aTdg

CPDT
5

A1

A2
S 12

CV

CP
D . ~2.12!

Our Eq. ~2.11! agrees with Eq.~1.10! of Gitterman and
Steinberg.

We now examine the numerical values of the coefficie
A1 and A2. For relative temperaturest;1024, it is clear
from such an examination thatA1 and A2 are numerically
small but the ratioA1 /A2 is close to unity for aDT which is
of the order of a micro kelvin. Att;1024, CV!CP and the
factorA of Eq. ~2.12! is consequently close to unity. The n
result is thatA2 and A1(A22A1) can be dropped in Eq
~2.9!, but A needs to be retained in Eq.~2.11!. It should be
noted that in such experimentsTc can never be reached be
cause there is a finite heat current and sot will never really
become significantly smaller than 1024. In such a situation,
Eqs.~2.9! and ~2.11! reduce to

¹4w52R¹1
2u, ~2.13!

¹2u52w@12A#, ~2.14!

the system arrived at by Carles and Ugurtas@7#. To see the
equivalence of Eqs.~14!–~19! of Carles and Ugurtas and ou
Eqs. ~2.13! and ~2.14!, we note that Eqs.~15!–~17! of Ref.
@7# can be written for the stationary state as

¹2vW 15¹W P11r1ẑ ~2.15!

while Eq. ~14! reads¹W •vW 150. Taking a divergence of the
former leads to ¹2P152]r1 /]z or ¹2(]P1 /]z)
52]2r1 /]z2. If we now operate thez direction velocity
profile with ¹2,

¹2¹2w15
]

]z
¹2P11¹2r15¹1

2r152
F

a
¹1

2T1 ,

~2.16!

where¹1
25]2/]x21]2/]y2. A proper rescaling ofw1 andT1

makes the above equation identical to Eq.~2.13! above. The
identical rescaling of Eq.~18! of Ref. @7# now leads to Eq.
~2.14! in the stationary limit by straightforward algebra
Since our Eqs.~2.13! and ~2.14! were obtained from a tech
nique similar to Gitterman and Steinberg and eventua
keeping the leading terms, we arrive at a system identica
that of Carles and Ugurtas, we believe that the two
proaches give the same result. Thus we have provided a
vation which shows clearly the connection between the t
different forms existing in the literature—that due to Gitte
man @3# and that due to Carles and Ugurtas@7#. We now
1-3
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discuss the boundary conditions@10#, where we will have to
introduce the effect of the surface tension. At the lower pl
~taken to be conducting!, the ‘‘no-slip’’ condition implies
that

w5
]w

]z
5u50 at z50. ~2.17!

The top surface is free and if from the mean position oz
51 there is a fluctuationh, then

w5
]h

]t
at z51. ~2.18!

For a stationary instability]h/]t50 and hence

w50 at z51. ~2.19!

If the interface is very weakly conducting, then we can a
proximate it as insulating and then

]u

]z
50 at z51. ~2.20!

Now for the force balance on the interface, the stress ten
is

Ti j 52Pd i j 1rnS ]v i

]xj
1

]v j

]xi
D . ~2.21!

The change in the normal component of the stress
2s•curvature, while the horizontal component of the stre
tensor has to be provided by the gradient of the surface
sion. The surface being characterized by the deflec
h(x,y), we have the unit vectors~ignoring quadratic powers
of h) given by: normaln̂5(2]h/]x,2]h/]y,1) and the
tangentialt̂5(1,0,]h/]x). The normal force balance on th
surface gives@10#

C̃S ]2

]z2
13¹1

2D ]w

]z
1~A22A1!¹2w5~¹1

42B̃¹1
2!h,

~2.22!

where C̃5rnl/2sd is the crispation number andB̃
5rgd2/2s is the Bond number. From the tangential stre
balance we get

]2w

]x2
2

]2T

]z2
2~A22A1!

]w

]z
1M

]2~u1h!

]x2
50 on z51.

~2.23!

We now choose the coordinate system such that the ax
the rolls coincide with they axis and thus there is noy
dependence inw and u. The x dependence is periodic wit
wave numbera in dimensionless units and thez-dependent
functions forw and u are F(z) and G(z), respectively, in
such a way thatw5F(z)eiax and u5G(z)eiax. So in the
final analysis,F(z) andG(z) satisfy the following equations
01631
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for Rayleigh-Marangoni convection in a compressible flu
@under the approximation thatA1 ,A2!1 andA;O(1)#

~D22a2!2F5Ra2G,

~D22a2!G52~12A!F ~2.24!

with

F5DF5G50 on z50,

F5DG50 on z51,

C̃~D223a2!DF5a2~B̃1a2!h on z51,

~D21a2!F1Ma2~a1h!50 on z51. ~2.25!

In the next section, we will analyze the solution of Eq
~2.24! under the boundary condition of Eq.~2.25! to arrive at
the relation betweenR andM that is necessary for the solv
ability. To end this section, we note that we are defining~as
has been conventional in the literature! M in terms ofDT,
whereDT/d is the temperature gradient in the layer.

An inconsistency in this approach was recently pointed
Rabin @8#, but as shown in the experiment of Schatzet al.
@9#, the conventional definition gives a very account of t
experiment and hence we will follow the conventional de
nition of the Marangoni number.

III. ANALYSIS

We begin with the observation that the surface fluctu
tionsh will be determined by the ratioC̃/B̃5nh/gd3. Close
to the critical point, the shear viscosity and hencen has a
weak divergence while the thermal diffusivity vanishes
the inverse of the correlation lengthz, which makesC̃/B̃
small near the critical point. Consequently in the followin
analysis, we will ignore the effect of the surface fluctuatio
We will use a variational functionG(z) for the temperature
fluctuations, which is known to be very accurate@9# for the
pure Marangoni convection. Our technique will be to~i! use
a trial function for the temperature variableG(z); ~ii ! solve

FIG. 1. Plot ofRc versus (d/dc).
1-4
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for the velocity profile from the velocity equation and ensu
that all boundary conditions are satisfied;~iii ! now satisfy the
temperature equations in the mean to find the relation
tweenR andM.

Accordingly, we choose

G~z!5zS 12
z

2D , ~3.1!

where an overall prefactor has been set equal to be unit
anticipation of the fact that in the homogeneous system
we have, it cannot eventually matter. The functionG(z) in-
corporates the conducting walls atz50 and the insulating
walls atz51. The solution of (D22a2)2F5Ra2G, now
e

m

ig
e
ib

e
y
s
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F~z!5A1 coshaz1A2 sinhaz1A3z coshaz

1A4z sinhaz1
R

a2 S 2
z2

2
1z2

2

a2D , ~3.2!

whereA1 , A2 , A3, andA4 are constants which have to b
obtained from the boundary conditions. Satisfying the te
perature profile equation in the mean, we arrive at the fi
result:

DT5
R0ln

agd3 S 1

11
R0

M0
S dc

d D 2D 1
aTgd

CP
, ~3.3!

wheredc is the crossover thickness defined in Eq.~1.12!, and
R0~a!5

2a4~CS2a!S 11
a2

3 D
CSS 2a2

3
26D2

3

2
aS21

13C2

a
1

1

a
~a224!~aS14C!2

7

6
a31a1

3

a

~3.4!
is

en

ng-

ue
and

M0~a!5

4~CS2a!S 11
a2

3 D
~S2a!2

, ~3.5!

whereC5cosha andS5sinha.
If we work with a thicknessd which is much smaller than

dc when one is well away from the critical temperature, th
as expected

DT.
M0ln

agddc
2

1
aTgd

CP
.

M0ln

agddc
2

~3.6!

which is the pure Marangoni convection. As the mean te
peratureT of the convection cell is lowered,dc decreases and
DT tends towards a value closer to that for pure Rayle
convection. It should be noted that even if the critical ph
nomena is unimportant and the compressibility effect exh
ited by the second term on the right hand side of Eq.~3.3! is
absent, Eq.~3.3! provides a clean analytic answer to th
problem of studying the crossover from Marangoni to Ra
leigh convection asd is increased. For this purpose, it is be
n

-

h
-
-

-
t

to exhibit the result in a plot ofRc vs d/dc , whereRc is the
usual critical Rayleigh number which for this problem
around 700 witha5ac.2.0. From Eq.~3.3!, we obtain in
this limit

R5

R0M0S d

dC
D 2

M0S d

dC
D 2

1R0

~3.7!

which is a function of the wave numbera, and has to be
minimized with respect toa to give Rc . The plot in Fig. 1
shows that even whend510dc , the effect of surface tension
is to cause a reduction of 8% in the pure buoyancy driv
Rayleigh number.

Returning to our present problem, we interpret the cha
ing temperature as a changingdc for a fixedd, and hence as
we go closer to the critical point we move from a small val
of d/dc to a later much larger value ofd/dc as the critical
point is approached.
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